LESSON: Linear & Non-Linear Functions

Function Unit

Name: Ho	ur:
----------	-----

OBJECTIVE (Students will be able to...):
Use the coordinate plane to graph and explain functions.

Linear Function: Any **function** that graphs to a straight line. Mathematically it is a **function** that has either one or two variables with no exponents or powers. Any equation in Slope Intercept Form is a linear function.

NOTES:

Non-Linear Function: Any function that graphs a non-straight line. Mathematically it is a function that contains exponents or powers.

LESSON: Linear & Non-Linear Functions

Function Unit

Determining Linear vs. Non-Linear

For each equation, fill in the table and graph the points. You can graph all 4 equations on the coordinate plane below. Number each graph. Circle the equations that produce a linear graph.

1.
$$y = 2x + 3$$

X			
у			

2.
$$y = x^2 - 3x$$

	x					
88	у	3: 3	0 0		9	

3.
$$y = \sqrt{x-4}$$

5.

X					
у	*	3: :5	3	3	

4.
$$y = \frac{1}{3}x$$

What do you notice about the equations that produce a linear graph? How are they different from an equation that produces a non-linear graph?