LESSON: Linear \& Non-Linear Functions
 Function Unit

Name: \qquad Hour: \qquad
OBJECTIVE (Students will be able to...):
Use the coordinate plane to graph and explain functions.

LESSON: Linear \& Non-Linear Functions
 Function Unit

Determining Linear vs. Non-Linear

For each equation, fill in the table and graph the points. You can graph all 4 equations on the coordinate plane below. Number each graph. Circle the equations that produce a linear graph.

1. $\mathrm{y}=2 \mathrm{x}+3$

x							
y							

3. $\mathrm{y}=\sqrt{x-4}$

x							
y							

2. $y=x^{2}-3 x$

x							
y							

4. $y=\frac{1}{3} x$

x							
y							

What do you notice about the equations that produce a linear graph? How are they different from an equation that produces a non-linear graph?

